Molecular Polarisability. Electro-optical Polarisability Tensor Ellipsoids for Pyridine, Quinoline, and isoQuinoline.

By (Mrs.) C. G. Le Fèvre and R. J. W. Le Fèvre.

[Reprint Order No. 6197.]

Abstract

The molar Kerr constants of pyridine, quinoline, and isoquinoline are now found at infinite dilution in carbon tetrachloride at 25° to be 150×10^{-12}, 149×10^{-12}, and 572×10^{-12}, respectively. Analysis using depolarisation factors in the first two cases, and "shape" factors in all three, yields semiaxes of the molecular polarisability ellipsoids; these semi-axes are not sensitively affected by the particular "factor" employed. The anisotropy of polarisability calculated for pyridine in solution is close to that deduced by Stuart and Volkmann for this substance as a gas. The mean polarisabilities of pyridine, quinoline, and isoquinoline are less than those of benzene and naphthalene; the differences are greatest in the direction normal to the molecular plane. The heterocyclic bases are more polarisable than their hydrocarbon relatives only along b_{2}. An empirical correction to ${ }_{\mathrm{m}} K_{\text {lq }}$, previously suggested by Le Fèvre and Le Fèvre, applies satisfactorily to liquid pyridine and quinoline.

As a result of our work on derivatives of benzene ($J ., 1954,1577$) and naphthalene (J. , 1955,1641) it seemed of obvious interest to consider the cases of pyridine, quinoline, and isoquinoline. Literature relating to the anisotropic polarisabilities of these bases is scarce. For pyridine, the axes of the molecular polarisability ellipsoids b_{1}, b_{2}, and b_{3} (shown by broken arrows in the Figure) have been deduced by Stuart and Volkmann (Ann. Physik, 1933, 18, 21) from electric double-refraction measurements on the vapour at $146 \cdot 3^{\circ}$, while observations of light scattering-confined to gaseous pyridine and quinoline-are summarised by Cabannes (" La Diffusion Moléculaire de la Lumière," Les Presses Universitaires de France, Paris, 1929, pp. 89, 254).

The present paper reports determinations made on solutions in carbon tetrachloride at 25°. Table 1 lists the molar Kerr constants found at infinite dilution, $\left.\infty_{(m)} K_{2}\right)$, together with the sum, $\left(\theta_{1}+\theta_{2}\right)$, derived therefrom via formula (1) of J., 1954, 1577.

Table 1. Molar Kerr constants at infinite dilution.

| Solute $\ldots \ldots \ldots \ldots \ldots \ldots .$. | Pyridine | Quinoline | isoQuinoline |
| :---: | :---: | :---: | :---: | :---: |
| $\infty\left(K_{2}\right) \times 10^{12} \ldots \ldots \ldots \ldots$. | $150 \cdot 0$ | $\mathbf{1 4 9 \cdot 1}$ | $571 \cdot 7$ |
| $\left(\theta_{1}+\theta_{2}\right) \times 10^{35} \cdots \ldots \ldots \ldots$. | $\mathbf{3 5 \cdot 7}$ | $\mathbf{3 5 \cdot 5}$ | $\mathbf{1 3 6 \cdot 0}$ |

With the first two solutes, separation of θ_{1} from θ_{3} is possible by using the molecular anisotropies, δ_{0}^{2}, calculated from depolarisation factors (cf. Cabannes, op. cit.). With isoquinoline, however, the necessary figures are not available and an alternative method must be devised. We accordingly propose the following : a scale drawing, incorporating Stuart's " Wirkungsradien" (Z. phys. Chem., 1935, 27, B, 350), is constructed as described by Barclay and Le Fèvre ($J ., 1950,556$) and the lengths A, B, and C utilised to divide up $3 b_{\text {mean }}$ proportionately ($3 b_{\text {mean }}$ is derived from the molecular refraction extrapolated for light of infinite wavelength as $\left.9 R_{\infty} / 4 \pi \boldsymbol{N}\right)$. The numbers so obtained are regarded as rough approximations to the desired half-axes of the molecular polarisability ellipsoid, and inserted into $\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}=Z$, whence an estimate of θ_{1} follows as ${ }_{\mathrm{D}} P Z /\left(45 \boldsymbol{k} T \cdot{ }_{\mathrm{E}} P\right)$. Table 2 compares θ_{1} so computed with that obtained via depolarisation factors, shown as θ_{1} (expt.).

The agreement is adequate, since θ_{1} is, with polar substances, usually much smaller than θ_{2}. Fortunately, among the present three bases, isoquinoline has the largest ($\theta_{1}+\theta_{2}$), so that its analysis for b_{1}, b_{2}, and b_{3} should be the least affected by errors in θ_{1}. That this is in fact the case is seen by ignoring θ_{1} entirely (i.e., putting $\theta_{1}=0$), whereupon b_{1} emerges as 2.06×10^{-23} (against 2.00×10^{-23} when $\theta_{1}=17.2 \times 10^{-35}$). Table 3 specifies

Table 2. Estimation * of θ_{1} from shape or depolarisation factors.

${ }^{*}$ The ${ }_{\mathrm{E}} P$, $_{\mathrm{D}} P$, and δ_{0}^{2} values required are given in Table 3.
Table 3. Calculation of molecular polarisability ellipsoids.

	${ }_{\mathbf{E}} P$ (c.c.)	${ }_{\mathrm{D}} P$ (c.c.)	$2 \delta_{0}^{2}$	μ, D	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$
Pyridine	$23.2{ }^{\text {a }}$	$26.5{ }^{\text {b }}$	$0.0792{ }^{\text {c }}$	$2 \cdot 35$	1.06	$1 \cdot 13$	0.55_{3}
Pyidin					1.06	$1 \cdot 15_{5}$	0.527
Quinoline	$39 \cdot 6{ }^{\text {a }}$	$46 \cdot 1^{\text {b }}$	$0 \cdot 1444{ }^{\text {c }}$	2.22	1.65	2.24	$0.79{ }^{\text {a }}$
					1.64	$2 \cdot 29$	$0.75{ }_{8}$
isoQuinoline	$39 \cdot 4{ }^{\text {d }}$	$45 \cdot 6{ }^{\text {b }}$?	$2 \cdot 60$	$\overline{2.00}$	$1 . \overline{91}$	$0 \cdot \overline{75}$

- Extrapolated from refractive indexes given in Landolt-Börnstein's "Tabellen," 1912 Edn. $I . e ., 1 \cdot 1 R_{\mathrm{D}} .{ }^{\epsilon}$ From Cabannes, op. cit., p. 254. ${ }^{d} I . e ., 0 \cdot 95 R_{\mathbf{D}}$.
the molecular polarisability ellipsoids obtained through either θ_{1} (expt.) or θ_{1} (calc.); results by these routes are entered in the upper and lower lines for each solute respectively. The b_{3} 's from θ_{1} (calc.) are seen to be $c a .5 \%$ below those from θ_{1} (expt.), the b_{1} 's scarcely diverge; the position revealed therefore justifies some confidence in the b 's now assigned

to isoquinoline. Reference to Table 8 of $J ., 1953,4041$, and to the text following Table 10 of J., 1954, 1577, shows that the differences under comment are less than those often occurring between sets of semi-axes published by separate authors for the same molecule. In this connection we may note that the disparity between our figures for pyridine in solution and those of Stuart and Volkmann for this material as a gas is less than appears at first sight if allowance be made for the greater $b_{\text {mean }}$ used by the German workers (viz., 0.950×10^{-23} by S. and V.; 0.914×10^{-23} by Le Fèvre and Le Fèvre) (see Table 4). Col. 3, which is col. 2 multiplied by $0.914 / 0.950$, accords satisfactorily with col. 1 .

Table 4. Polarisabilities of pyridine dissolved or vapourised.
State
(1) Solute (authors)
(2) Gas (S. and V.)
(3) Gas
$10^{23} b_{1}$
$10^{23} b_{2}$
$10^{23} b_{3}$

1.06	1.084	1.043
1.13	1.188	1.143
0.55_{3}	0.578	0.556

Table 5. Average polarisabilities.

Comparisons with the Corresponding Ar-Hydrocarbons.-The mean polarisability of benzene exceeds that of pyridine, as does that of naphthalene those of quinoline and isoquinoline (Table 5). The differences however do not occur uniformly along the three axes, but seem in all cases to be greatest in the direction normal to the molecular plane, intermediate in the dipole (or b_{1}) direction, and least along b_{2}; it is notable that the heterocyclic molecules are more polarisable than their hydrocarbon relatives only along b_{2} (see Table 6). The last effect is an important sequel to the replacement of a CH by an
isoelectronic nitrogen atom : the former having a bond whose b_{L} is nearly equal to its b_{T} or b_{∇} (cf. $J ., 1954,1577$), the latter carrying a lone pair whose contributions to b_{2} and b_{3} should presumably be the same. For many physical properties, of course, this replacement

TABLE 6. Values of $\mathrm{b}_{\mathrm{i}}{ }^{\text {base }}$ minus $\mathrm{b}_{\mathrm{i}}{ }^{\text {bydrocarbon }}$						
	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$10^{23} \Delta b_{1}$	$10^{23} \Delta b_{2}$	$10^{23} \Delta b_{3}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.06	$1 \cdot 13$	0.553	-0.05	$+0.01{ }_{5}$	-0.18
$\mathrm{C}_{6} \mathrm{H}_{6}$	$1 \cdot 114$	$1 \cdot 114$	$0 \cdot 733$.			
$\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{~N}$	1.65	2.24	0.795	-0.11	$+0.09$	$-0.23{ }_{5}$
$\mathrm{C}_{10} \mathrm{H}_{8} \dagger$	1.76	2.15	1.03			
iso $-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$	$2 \cdot 00$	1.91	$0 \cdot 752$	-0.05	$+0.05$	-0.28
$\mathrm{C}_{10} \mathrm{H}_{8} \ddagger$	$2 \cdot 05$	1.86	1.03			
* From J., 1954, 1577.						
\dagger From $J_{\text {., 1951 }}$ 1955, 1641, where b_{1} of naphthalene corresponds to the b_{2} direction of quinoline. \ddagger The b 's shown are calculated from those of naphthalene, via $b_{1}{ }^{\beta}=b_{1} \mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{\mathbf{0}} \cos ^{2} 30^{\circ}+b_{2} \mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{\mathbf{4}} \sin ^{2} 30^{\circ}$						

causes little alteration (e.g., for spectra, see Bowen, Ann. Reports, 1943, 40, 25). Perhaps the contributions of structures such as (d) shown by Coulson ("Valence," Oxford, 1952, p. 241) are not negligible.

Molar Kerr Constants of Pure Pyridine and Quinoline.-The B 's for these two substances may be deduced from the measurements, relatively to carbon disulphide, reported by Leiser (Abhand. Deut. Bunsen-gesellschaft, No. 4, Halle a.S., 1910) and Lippmann (Z. Elektrochem., 1911, 17, 15), viz., 6.32 and 4.66 . The value of $B_{20}^{\mathbf{c s}_{\mathbf{2}}}$ being taken as $3 \cdot 226 \times 10^{-7}$, the B 's of pyridine and quinoline are 20.4×10^{-7} and $15 \cdot 0 \times 10^{-7}$ respectively. The molar Kerr constant of the pure liquid then follows as ${ }_{\mathrm{m}} K_{\text {liq. }}=$ $6 B \lambda n M /\left(n^{2}+2\right)^{2}(\varepsilon+2)^{2} d$; Table 7 contains the necessary data. While ${ }_{m} K_{\text {liq. }}$. is

TABLE 7. Empirical correction of ${ }_{\mathrm{m}} K_{\text {liq. }}$.

	$10^{7} B_{1}$	d	n	ε	$10^{12}{ }_{\text {m }} K_{1}$	$\left(10^{12} \mathrm{~m} K\right) \varepsilon / n^{2}$
Pyridine	$20 \cdot 4$	0.978	1.5074	12.01	24.5	130
Quinoline	$15 \cdot 0$	1.090	1.625	8.704	$43 \cdot 6$	144

considerably smaller than $\infty\left({ }_{m} K_{2}\right)$-listed in Table 1-application of the empirical correction suggested by Le Fèvre and Le Fèvre (J., 1953, 4041) produces figures which approach the orders of those now obtained at infinite dilution.

Experimental

Materials, Apparatus, and Methods.-The solutes were originally pure commercial samples but were dried and refractionated immediately before preparation of solutions. The carbon tetrachloride was part of the bulk described in J., 1954, 1577. The apparatus, details of procedure, and calculation remain as noted in J., 1953, 4041, wherein the symbols found in the following Tables are defined. Observations are recorded in Table 8, and computations of $\propto\left({ }_{m} K_{2}\right)$ summarised in Table $9 ; \lambda$ has been taken as $5893 \dot{\AA}$.

Table 8. Kerr constants and refractive indexes of solutions in carbon tetrachloride at $\mathbf{2 5}$.

The temperature used throughout was 25°, for which the appropriate solvent constants are : $10^{7} B=0.070 ; n_{\mathrm{D}}=1.4575 ; d_{4}^{25}=1.5845 ; \varepsilon=2.2270 ; H=2.060 ; ~ J=0.4731 ; ~ 10^{12}{ }^{1} K_{1}=$ 0.0749 .

It will be noted that between quinoline and isoquinoline, on one hand, and α - and β-naphthyl derivatives, on the other, the relative magnitudes of the molar Kerr constants at infinite dilution

Table.9. Calculation of molar Kerr constants at infinite dilution.

Solute	$\boldsymbol{a \varepsilon} \varepsilon_{1}{ }^{*}$	β *	γ	δ	$\infty\left({ }_{\mathrm{m}} K_{2}\right) \times 10^{12}$
Pyridine	$13 \cdot 88$	-0.582	$0 \cdot 070$	258	150
Quinoline	$8 \cdot 25$	-0.443	$0 \cdot 159$	157	149
isoQuinoline	11.0	-0.424	$0 \cdot 161$	576	572

* From unpublished measurements by Freeman, Le Fèvre, Rao, and Tardif.
show similar trends: $\infty\left({ }_{m} K_{2}\right)$ of isoquinoline is roughly four times that of quinoline, while $\beta-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{X}$-when $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I -usually has a molar Kerr constant $2-3$ times that of its α-isomer (cf. J., 1955, 1641).

We thank the Royal Society, and Imperial Chemical Industries, Australia and New Zealand, Ltd., for grants with which our apparatus has been purchased.

School of Chemistry, University of Sydney,
N.S.W., Australia.
[Received, March 4th, 1955.]

